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9.1 Introduction: R. F. Wagner
and Image Quality

Over the course of his long and productive career, Robert F.
Wagner revolutionized the field of medical imaging system
evaluation. He was a brilliant electrical engineer and physi-
cist with a remarkable intuition who synthesized ideas from
World War II era communications theory, TV picture quality
measures of the 1950s, and statistical decision theory publica-
tions from the 1960s to formulate a science of image quality
for medical imaging. This chapter begins with an overview of
the key concepts of Wagner’s theory for medical image quality.
In subsequent sections, we will consider various extensions to
Wagner’s theory that enable the evaluation of imaging system
performance for modern system designs and applications.
Bob Wagner’s ideas are alive in the efforts of the current
generation of imaging scientists, who continue to apply his
approach to imaging system evaluation as they strive to design
and optimize new approaches for disease detection and man-
agement through imaging.

9.2 Elements of Wagner’s Unified SNR
for Medical Imaging

Wagner’s unified approach to the evaluation of medical imag-
ing systems is founded on two core concepts (Wagner and
Weaver 1972). The first is that image quality is task depend-
ent. The only way to describe the quality of an imaging system
is in terms of how useful it is for performing a specific task. An
imaging system might be quite outstanding for one task, per-
haps determining a calcium score, but not particularly effec-
tive for another, say detecting a lung nodule. Embedded in the
task-dependent aspect of image quality is the requirement that
the user of the images, that is, the strategy, algorithm, or per-
son who performs the task, must be defined. Some imaging
systems are targeted for use by highly trained experts, some for
technologists, and still others might involve computer algo-
rithms. The user of the images is termed the observer; in the
next section we will take up the concept of optimal observers
for the evaluation of imaging systems.

The second core concept in Wagner’s theory is that
image quality is statistical. Because all images are degraded
by noise of one form or another, no two images of a particular
patient are exactly the same. In fact, if we were able to acquire
a large set of images of a single patient (imagining a world
without radiation risks or other downsides to doing this), none
of them would be exactly alike. Such a set of images from a
single patient is random, where the randomness results from
imaging system noise contributions (electrical, photon, ther-
mal, etc.) and other sources of variability such as system or
patient motion.

Consider a digital imaging system, such that each image
comprises M pixels. An image can be represented mathemati-

cally as an M-dimensional vector g with elements {g1, g2, …,
gM} for each of the M pixels. Here we use what is known as lex-
icographic ordering to create the data vector from the digital
image. For example, if the image is the output of a 2D detector
of dimension Mx by My , the first Mx elements of g conventionally
contain the data from the first row of the detector, the next Mx

elements contain the second row, etc., until all My rows of the
detector output are concatenated into one long data vector. The
label m can take on any pixel address from (0,0) to (Mx,My). In
this way the pixel label m runs from 1 to M � Mx�My, the total
number of pixels or detected values in an image.

Patients, the objects at the input to the imaging system,
can also be represented mathematically as vectors, although
we have to keep in mind that they have very different mathe-
matical properties from digital images. Objects, or patients,
are essentially continuous. Further on in this chapter we will
consider the computer generation of simulated images from
models of objects and imaging systems. When such simula-
tions are performed, the object is often modeled as a dis-
cretized or voxelized version of reality. Nevertheless, real
objects are continuous, and we will represent them here by
an infinite-dimensional vector f.

The set of all images that could be obtained from a sin-
gle object f is described by a probability density function that
describes the probability of obtaining an image g given that
the actual object was f, written pr(g | f). Image quality is sta-
tistical because the observer’s task performance depends
very much on this probability density function. Image quality
is defined in terms of expected performance of a task by an
observer on average, given all the randomness in the image
formation and capture processes. It is not meaningful to eval-
uate an imaging system on the basis of a single image, or to
compare two systems using one image from each. Meaningful
comparisons must take into account the nature of pr(g | f).

9.2.1 Classification Tasks and the Ideal Observer

When comparing imaging systems we must thus define the
task and the observer. Wagner’s work focused on two-class
detection and classification tasks, often called binary tasks.
In these tasks, the goal of the observer is to determine which
of two hypotheses is true regarding the patient—for example,
the tumor is either present or absent—on the basis of the
image. This task presumes that each patient can be classified
unambiguously one way or the other; there’s no fuzziness or
possibility that a patient belongs partially in both classes
(and there’s no option of belonging to some third category,
either). Either hypothesis 1, denoted, H1, is true, or else
hypothesis 2, denoted H2, is true. In a binary classification
task, the observer must render a decision in favor of either H1

or H2 for each image.
One of Wagner’s main contributions to medical imaging

was his advocacy for the evaluation of imaging systems in
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terms of how well the resulting images could be used for a
classification task, when the task was performed by the best
observer imaginable. He referred to this best-of-all-observers
as the ideal observer. The ideal observer, a construct from
statistical decision theory, is an observer that is optimal in
just about any way imaginable. It is the observer that makes
the fewest decision errors, it minimizes decision risk (when
risks are assigned to each decision outcome), and it has the
maximum hit rate at any false alarm rate.

The performance of the ideal observer gives an upper
bound to the usefulness of the images from a specified sys-
tem. To achieve this performance level, the ideal observer
uses a classifier derived from a ratio of the likelihoods of the
data under each of the hypotheses. The ideal observer must
therefore have complete information regarding pr(g|H1), the
conditional probability of obtaining the set of images, g, if H1

is true, and likewise pr(g|H2), which requires knowledge of
the image formation process (how data are governed by the
underlying hypotheses, both deterministically as well as by
any sources of randomness).

Wagner argued that this performance bound describes
the full information content available in the images from that
imaging system. The actual users of the images may not
achieve this bound, but the information is there. Does that
make the ideal observer irrelevant? Absolutely not, Wagner
argued! Designers of imaging systems should make every
effort to engineer systems that maximize the information
available in the data for the intended task. It is then up to the
actual users of the images, perhaps with the aid of computer-
aided diagnosis software or image processing algorithms, to
achieve performance approaching that bound.

9.2.2 The SNR of the Ideal Observer

In 1985, Wagner and Brown published a landmark paper on
the “Unified SNR analysis of medical imaging systems.” In
this work they introduced the signal-to-noise ratio of the
ideal observer, denoted SNRI. Wagner and Brown presented
expressions for SNRI for all the major medical imaging
modalities of the time, including radiography, computed
tomography (CT), nuclear magnetic resonance (NMR), and
even time-of-flight PET (positron emission tomography),
along with this simple expression as a figure of merit for the
ideal observer’s performance:

(9.1)

∆S(qq) is the Fourier transform or spectrum of the signal to be
detected in a detection task (qq refers to spatial frequency),
and its appearance in equation (9.1) ensures that SNRI is task
dependent: If the task is detection of a lesion, ∆S(qq) is the
Fourier spectrum of the lesion, so it depends on the lesion’s
size, shape, amplitude, and so on. In a classification task,

SNR NEQI
2 2= ∫ d Sρρ ρρ ρρ∆ ( ) ( ).

∆S(qq) is the Fourier transform of the difference in the two
objects at the heart of the competing hypotheses.

NEQ(qq) is the noise equivalent quanta—the number of
quanta or photons the image is worth—to an ideal observer
who makes perfect use of each quantum. Every medical
image is made with a certain number of photons or counts of
some sort, depending on the imaging modality. These pho-
tons represent in some sense the cost of the image, in terms
of exposure to the patient, or time, or both. The more efficient
the system is at “transferring” quanta, the closer the NEQ is
to the actual number of quanta used to make the image.
Thus, for the same input quanta, a better system is one that
transfers quanta more efficiently, so that when the resulting
NEQ(qq) is weighted by the square of the spectrum of the dif-
ference between the signal alternatives being distinguished
by the ideal observer, the better system has higher SNRI. In
the words of Wagner and Brown, “The ideal observer SNR2

is just an integral over the NEQ(qq) spectrum determined by
the system detection hardware—weighted by the spectrum of
a difference signal—corresponding to the observer’s task.”

It was not long after the introduction of this SNRI

approach that new radiological imaging systems were rou-
tinely described by their NEQ(qq) in conference presenta-
tions, showing how the latest engineering innovations
surpassed older generations of the system. Plots of NEQ(qq),
or its close cousin, the detective quantum efficiency or
DQE(qq), were routinely submitted (and still are) to the FDA
as part of the laboratory data and system description pro-
vided by the manufacturer. The neat factorization of the task
and system contributions to the SNRI in equation (9.1)
implied that systems could be compared by simply comparing
their NEQs. The problem with that approach is that, as we
shall see, the simply factorization of the Fourier quantities in
equation (9.1) only holds when some very strong assump-
tions regarding the properties of the imaging system and the
task are true.

For a meaningful discussion of the details of Wagner’s
unified SNR, and of its limitations, we have to take a few
steps back and develop a framework for analyzing imaging
systems in general. Then we will consider the various factors
in Wagner’s SNR in light of the known properties of modern
digital imaging systems.

9.3 Imaging as the Transfer of Information

An imaging system is a mapping or transfer of information
from an object, which we have denoted f, to the image or data
set, which we are calling g. In the absence of measurement
noise, the imaging process can be represented quite generally
as (Barrett and Myers 2004): 

(9.2)g f=H ,
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where H is the deterministic operator that takes as input the
object f and generates a noiseless data set g. This general
expression allows for the imaging process to be either linear
or nonlinear.  In the sections that follow we will limit our
analysis to linear imaging systems.

9.3.1 Linear Systems Theory

In Wagner’s theory of image quality, the imaging system is
assumed to be linear (or linearizable). In a linear system, if
the object consists of two contributions, f � f1 � f2, the
expected image would be the sum of the images that would
be obtained from each of the contributing objects: g � g1 �

g2 �Hf1 �Hf2. Likewise, if an object is composed of a sig-
nal and background, written f � fs � fb, the image is the sum
of the images of these contributions: g �Hfs �Hfb � gs �

gb. If a lesion’s amplitude doubles, so would the resulting data
from that signal. In many imaging modalities this assumption
is quite close to being true, especially if the signal contribu-
tion is one of low contrast. Wagner was particularly inter-
ested in the detection performance of such systems in which
signals are near the limit of detection, and in which contrast
is thus inherently low.

When an imaging system can be treated as a linear oper-
ator, the mathematics describing the imaging process simpli-
fies considerably. In that case the imaging system can be
modeled in terms of point response functions, h(rdet,r). For a
point source at location r in the object, h(rdet,r) describes the
response of the imaging system at all locations rdet in the
detector plane. For an arbitrary object, system linearity tells
us that the image is then a sum of the contributions from all
the point sources that make up the object, as mapped by the
point response functions (PRF):

(9.3)

The role of the PRF is suggested by the case of a perfect
imaging system, in which h(rdet,r) is represented by the Dirac
delta function, h(rdet,r) � d (rdet � r). Then equation (9.3)
reduces to g(r) � f (r), meaning that the transfer of informa-
tion from the object to the image is exact. 

Equation (9.3) assumes that while the system may not be
perfect, it nonetheless is linear, and it allows for the PRF to
depend on the location of the point in the object. This gener-
ality can be very important in some medical imaging modal-
ities. In CT, for example, the response of the imaging system
to a point in the center of the gantry is different from the
image of one at the periphery. We call this system property
shift variance. Similarly, in projection radiography the focal
spot has a different effect on image blur depending on the
location of the object of interest. As we see in Figure 9–1, the
focal spot projection onto a detector through a pinhole posi-
tioned at different locations in object space has different

g h f d( ) ( , ) ( ) .det detr r r r r= ∫

shape and size (Kyprianou et al. 2006). This effect causes the
blur of structures near the chest wall in mammography to be
different from that experienced by structures far from the
chest wall, for example.

A full description of a shift-variant imaging system
requires the characterization of h(rdet,r) for all combinations
of points in object space and locations in the resulting image.
In some applications this can be done experimentally, as for
example the approach pioneered at the Center for Gamma Ray
Imaging at the University of Arizona. In that group’s approach,
a small radioactive point source, mounted on a robotic arm, is
stepped through a large number of locations inside the bore of
a single photon emission computed tomography (SPECT) sys-
tem, allowing the determination of the response of the system
to each “object point” location (Rowe et al. 1993). This infor-
mation is stored for use in system-specific image reconstruc-
tion algorithms and estimation routines.  

Another approach to the characterization of a shift-vari-
ant imaging system is through the use of accurate Monte
Carlo modeling. With such simulations, the PRF of a modern
digital imaging system can be probed in detail at very fine
scale. In radiography, angle of incidence is another variable
that needs to be considered for modern geometries, espe-
cially in cone-beam and tomosynthesis systems. Badano and
coworkers at the FDA’s Center for Devices and Radiological
Health (CDRH) have published examples of the variation in
the point response as a function of the angle of incidence in a
digital radiography system (Badano et al. 2006; Kyprianou 
et al. 2008). An important challenge in making use of such
detailed simulations is the development of parsimonious 
representations of the resulting data for system modeling,
comparisons of competing system designs, and improved
image reconstruction algorithms and inferences from the
resulting images (Rao et al. 2010).
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Figure 9–1. Projection of the focal spot from a radiographic
imaging system onto different points on the detector plane, demon-
strating the location-specific differences in blur than can result.



If we are able to assume that the PRF is the same for all
object locations, we say that the system is shift invariant.
The PRF for a linear, shift-invariant (LSIV) imaging system
is referred to as the point spread function (PSF). For an
LSIV system, the imaging process is modeled as a simple
convolution of the PSF with the object:

(9.4)

In other words, there is no preferred origin of the imaging
system. The image of any point source in the object is the
same—it has the same point spread function—with the req-
uisite shift to account for the point source’s location. The
image of a complicated object is then realized as a sum of
shifted and weighted PSFs.

An LSIV system must have a continuous data set. Digital
imaging systems are never truly LSIV. Because of the finite
size of each detector element in a digital imaging system,
slight shifts in an object location can result in large changes
in the data. Thus the imaging equation in (9.4) may be a
good model for a film-screen x-ray system, but not nearly so
for an x-ray system with a digital detector, especially one
with large pixels.

9.3.2 Fourier Analysis for Linear Systems

From the very beginning of his career, Bob Wagner champi-
oned the use of Fourier analysis as a tool for characterizing
medical imaging systems. In 1972, not long after he arrived
at the FDA, he published a review of image quality metrics in
an SPIE proceedings document (see also Brown 2009). In
this early analysis, Wagner laid out his vision for task-based
image quality assessment and the Fourier quantities central
to the approach he advocated. It is these quantities that we
take up next.

The assumption that an imaging system acts as a linear
mapping is a key enabler of using Fourier methods to analyze
its properties. With Fourier analysis, a continuous object is
written as a weighted sum of Fourier basis functions. In two
dimensions, the continuous object f (r), or f (x,y), can be
expressed as:

(9.5)

The Fourier basis functions are the complex exponentials,
exp(2p ixx � 2p ihy), which are simply two-dimensional wave
functions with spatial frequencies x andh in the x and y direc-
tions, respectively. Each basis function has weight F(x ,h ),
which we refer to as the Fourier coefficients of the object.

Equation (9.5) is the familiar form of the inverse Fourier
transform for the specific case of a two-dimensional object.

f x y d d F i x i y, ( , ) exp .( ) = +( )
−∞

∞

−∞

∞

∫∫ ξ η ξ η π ξ π η2 2

g h f d( ) ( ) ( ) .det detr r r r r= −∫

Since in medical imaging the object might be three-dimen-
sional, as in the case of volumetric imaging, or even four-
dimensional when time-dependent properties of the object are
important, we can express equation (9.5) more generally as

(9.6)

where r is the vector of coordinates in the object space and qq
is the corresponding conjugate vector of frequencies in the
Fourier domain. The integral is over the infinite range of 
frequencies.

Like all good basis functions, the Fourier basis has the
beautiful property of being orthonormal: 

(9.7)

where the right-hand side features the Dirac delta function.
The integrated product of any one basis function with itself
gives 1, while the integrated product of any basis function
with a different basis function gives 0. Here again the inte-
grals cover the infinite range, this time over all space.

The orthonormality property of the Fourier basis set is
what allows us to model an LSIV imaging system as a trans-
fer of independent frequencies through the system. Fourier
transformation of the LSIV imaging equation (9.4) gives:

(9.8)

where H(qq), the Fourier transform of the system PSF, is
referred to as the transfer function of the system. H(qq) is
related to the modulation transfer function (MTF) of the
imaging system according to MTF(qq) � |H(qq)|/H(0). As its
name suggests, the MTF of an imaging system is a descrip-
tion of the ability of a system to transfer modulations, or
image contrast if you wish, as a function of spatial frequency
from input to output. By its normalization, the MTF ranges
from 0 to 1; MTF(qq) � 1 indicates that an image’s Fourier
component at spatial frequency qq is passed through the sys-
tem without decrease in amplitude. Alternatively, an MTF(qq)
of 0 means the information being conveyed at that frequency
is completely attenuated by the system, so that nothing is
measurable at the output. In Fourier-speak, equation (9.8)
represents shift-invariant filtering of the object.  

9.3.3 Adding in Measurement Noise

All imaging systems suffer from one or more sources of
measurement noise. We can express this reality by adding a
noise term to the imaging equation:

(9.9)

G H Fρρ ρρ ρρ( ) = ( ) ( ),

g f n=H +

exp exp2 21 2 1 2π π δi i dr r r⋅( ) − ⋅( ) = −( )∫ ρρ ρρ ρρ ρρ ,

f F i dr r( ) = ( ) ⋅( )∫ ρρ ρρ ρρexp ,2π
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Expressing the noisy image in this way does not restrict our
analysis to systems in which the noise is additive. Systems
limited by quantum noise, which is known to be Poisson and
thus image-dependent (certainly not additive), can be written
in this way if we understand equation (9.9) to mean that the
noise is the difference between the actual image and the
image we expected in the absence of noise: n � g �Hf.

Because of measurement noise, an image is a sample of a
random process. A full description of the data’s randomness
would require knowledge of the full probability density of the
data given the object, pr(g | f). This probability density is
often modeled using familiar forms from probability theory.
For example, we often assume the data are Gaussian, as in
the case of thermal noise fluctuations from electronic circuits
and MR receiver coils, or we may adopt a Poisson model, as
in quantum-limited imaging. These probability laws describe
the fluctuations in the data values in each pixel, the correla-
tions between pixels, and all higher-order statistical relation-
ships between the random data values. 

We use simpler descriptions of the noise, especially low-
order moments of the data such as their mean value and stan-
dard deviation, for several reasons. First, if it is reasonable to
assume that the noise follows some well-known distribution
like the Poisson or Gaussian model, then such low-order
moments completely describe it. A Poisson distribution is
completely characterized by the mean of the random param-
eter, and a Gaussian data vector is completely described by
the mean data vector and its covariance. The other reason we
use low-order moments to describe random images is that we
are able to estimate them from a manageable number of
measured images. We will have more to say on this practical
issue later in this chapter. For now, we assume we have an
infinite population of images, or equivalently, complete infor-
mation regarding the randomness in the images. Further-
more, we’ll assume for now that the noise is additive and
Gaussian distributed. Wagner’s original contributions on
image quality presumed this form of noisy data, arguing that
multiplicative Poisson noise is adequately modeled as Gauss-
ian in the limit of low-contrast imaging. At the same time his
analysis accounted for correlations in the images.

The use of Fourier analysis to describe image noise 
correlations is predicated on certain powerful assumptions
regarding the behavior of the underlying random process. In
a few words, the random process is assumed to be wide-sense
stationary. Stationarity in a broad sense stipulates that the
randomness of the data does not depend on origin or absolute
location. Wide-sense stationarity is a weak form of stationar-
ity: the randomness of the data is only required to be inde-
pendent of absolute location when considering the mean and
the covariance of the data.

Under wide-sense stationarity, the average value of a set
of images is the same everywhere. If �g(r)� is the average of
an infinite number of images, wide-sense stationarity requires

that �g(r)� � C; the average image is a uniform field of 
level C.  

In the analysis of image noise, it is useful to separate out
the difference in the mean at each image location from the
fluctuations about that mean, in which case the autocovari-
ance function becomes the statistical description of choice.
The autocovariance function, K(r1,r2), is defined by: 

(9.10)

where the overbars denote average quantities and the asterisk
denotes complex conjugate. The autocovariance function
describes the covariation in the images between locations r1

and r2. A full characterization of the autocovariance would
require knowledge of this function for all pairs of locations in
the image. Wide-sense stationary processes are ones in which
the autocovariance does not depend on absolute location, but
rather depends only on the vector separation ∆r � r2 – r1. In
that case

(9.11)

While the full autocovariance function of equation (9.10)
depends on two position vectors, the wide-sense form of
equation (9.11) only depends on one, the vector separation
∆r between the two points. The absolute location of the two
points is immaterial (there is no preferred origin). This is the
stochastic data description’s analogy to shift-invariance,
which we described above as meaning that the deterministic
image formation process can be written in terms of a point
response that depends only on the distance from the center of
the point’s image, not on the absolute location of that image.

The standard Fourier description of image noise is the
Wiener or noise power spectrum, NPS(qq), a frequency-
dependent description of the fluctuations in the output of the
imaging system. The noise power spectrum is related to the
autocovariance function via the Fourier transform F:

(9.12)

where the dagger implies an adjoint (see more on adjoints
below). This expression relies on the wide-sense stationarity of
the image noise. It is only in that case that the autocovariance is
a function of a single vector, which can be transformed to yield
a noise power spectrum that is also a function of one (spatial
frequency) vector. In later sections we will consider noise
descriptions for situations where the data are not stationary.

9.3.4 Noise Equivalent Quanta (NEQ)

We now have all the Fourier building blocks needed to define
the Noise Equivalent Quanta of equation (9.1). NEQ(qq) is

F FK † , ,  ( ) = ( ) −( )ρρ ρρ ρρ ρρ ρρ1 2 1 1 2NPS δ

K g g g g∆ ∆ ∆r r r r r r r( ) = ( ) − ( )  +( ) − +( ) * * .

K g g g gr r r r r r1 2 1 1 2 2, ( ) ( ) ,* *( ) = ( ) − ( )  − 
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the product of three Fourier descriptions of an imaging sys-
tem’s performance: the grayscale transfer H(0), the MTF,
and the NPS, according to

(9.13)

When we substitute this expression into the SNRI of equation
(9.1), we see that the ideal observer’s figure of merit has
large contributions from spatial frequencies in the signal that
are transferred efficiently by the system (large values of the
MTF), while those frequencies that are attenuated by the sys-
tem (low MTF) contribute less. Spatial frequencies for which
the NPS is high bring down the SNRI, relative to those fre-
quencies for which the noise is low.

9.3.5 Strategy of the Ideal Observer 

The SNRI of equation (9.1) is achievable in practice by an
algorithm or machine reader known as the prewhitening
matched filter. This ideal observer applies a linear filtering
algorithm to the Fourier transform of each image, G(qq), to
give the following classifier output:

(9.14)

where is the Fourier transform of the
image of the expected difference in the objects; if the task is
signal detection, then this is the image of the lesion to be
detected. A computer-aided diagnosis algorithm is sensitive
to image features; likewise, the ideal observer makes use of
features, in this case, an infinite sum of them, evaluated at
spatial frequencies in the Fourier domain. Each feature in
frequency space is the product of the Fourier transform of the
image with the Fourier transform of the image of the known
signal to be detected, divided by the noise power in that fre-
quency. Early on, owing to his training as an electrical engi-
neer, Bob Wagner thought of those frequencies as channels.

9.4 Extension to Shift-Variant, 
Non-Stationary Imaging

In modern medical imaging, the object is continuous while
the data are digital, which is to say, discrete. Thus, the imag-
ing system is mathematically a continuous-to-discrete (CD)
operator.  Moreover, the digital detector has a finite extent. So
the assumptions that led to the Fourier form of the ideal
observer’s SNRI in equation (9.1) are challenged by modern
medical imaging systems.

Nevertheless, as we shall see, the guiding principles that
led to that figure of merit are very much applicable to the
analysis of today’s imaging modalities. In particular, image

t d
G G

d
S G= =∫ ∫ρρ ρρ ρρ

ρρ
ρρ ρρ ρρ ρρ

ρρ
∆ ∆( ) ( )

( )

( ) ( ) ( )

( )NPS

H

NPS
,,

NEQ( )
H (0) MTF ( )

NPS

2 2

ρρ ρρ
ρρ

= ×
( )

.

quality must be objective and task-based, requiring that the
object(s) to be detected/classified/estimated are specified, as
must also be the observer that will perform the task. Second,
the objective assessment of image quality requires an accu-
rate accounting of the deterministic and stochastic properties
of the image formation process. And finally, as we shall see,
the tools available to us from linear systems theory are pow-
erful resources for analyzing even systems with properties
that call into question standard Fourier analysis.

9.4.1 Object Representations

In section 9.3.2 we wrote the continuous object in terms of a
weighted sum of wavefunctions, equation (9.5). The Fourier
basis is just one choice for basis functions available for repre-
senting objects. More generally, we can exactly represent any
object as an infinite sum of weighted orthonormal basis func-
tions un(r):

(9.15)

as long as the object has finite extent and “energy” (the inte-
gral of the object squared). The reader may note a difference
between this expansion representation and the integral form
in equation (9.5). The difference comes from the acknowl-
edgment here that real patients have finite size. The Fourier
expression of equation (9.5) allowed for objects that had no
spatial boundary.

The orthonormality property of basis functions (refer to
equation (9.7)), makes the determination of the coefficients
in equation (9.15) straightforward:

(9.16)

So now the question arises, how do we choose the basis set
un(r)? The answer is inspired by this fact: for LSIV systems,
the Fourier wavefunctions have the special property that they
are eigenfunctions of the imaging system operator. That is,
the system can be seen as transferring the Fourier wavefunc-
tions independently (the transfer of one frequency of the
object is not influenced by the presence of another) accord-
ing to the system transfer function for that frequency. By
extension, we seek a basis that provides the same ability to
model the digital image acquisition process as the transfer of
independent basis functions.  

9.4.2 Singular Value Decomposition (SVD)

In the absence of noise, a linear continuous-to-discrete imag-
ing system generates data according to:

(9.17)g h f dm m= ( ) ( )∫ r r r,

αn nu f= ( ) ( )∫ * .r r

f un n
n

r r( ) = ( )
=

∞

∑α
1

9. WAGNER’S UNIFIED THEORY OF IMAGE QUALITY: THREE DECADES LATER 149

∆ ∆G S( ) ( ) ( )ρρ ρρ ρρ= H



where gm is the data in the mth pixel and hm(r) is the mth point
response function, which describes the sensitivity of the mth

measurement to the function f (r) at point r. Here we use the
process of lexicographic ordering described in section 9.2 to
create a vector of M elements from the digital image. Equa-
tion (9.17) describes a CD mapping that results in a tremen-
dous dimensionality reduction. At the input is an object that
requires an infinite set of coefficients to represent exactly (cf.
equation (9.15)); the output is a finite set of measurements,
M of them in all. Clearly this is not an invertible process.
There is simply no way to determine the true object that was
at the input of the imaging system from its digital image g.
Mathematically, g � Hf, but we cannot write f � H–1g
because H–1 does not exist.  

This noninvertibility of the imaging operator, owing to
the continuous-to-discrete nature of digital imaging systems,
is a fact we did not reckon with when we were considering
LSIV systems. There we assumed that the dimensionality of
the object and image were the same. Both were continuous;
the imaging system was a continuous-to-continuous (CC)
mapping. So long as the system MTF had no zeroes, the
object could be recovered by inverting equation (9.8). While
any real CC system will have some frequencies for which the
MTF is zero, it is at least possible to see from equation (9.8)
how to recover the transferred frequencies of the object.

As a stepping stone to determining the basis functions
we seek, we introduce an alternative operator that maps the
discrete data to a function in the space of the object. The
adjoint operator H† takes as its input a vector in the data
space and outputs a superposition of the complex con-
jugates of the point response functions hm(r):

(9.18)

The function lives in the space of the object. Opera-
tionally is a weighted sum of the continuous functions 

where the weights are the data elements. The adjoint
operator exists and is well behaved, even when the same can-
not be said of the inverse operator.  

The adjoint operator converts a function of image space
coordinates to a function of object space coordinates. Its
behavior is familiar for special cases. For example, the adjoint
of a real matrix is its transpose. In projection imaging, the
adjoint of the continuous-to-discrete operator describing the
image formation process is the backprojection operator. The
adjoint of the Fourier transform operator is the inverse
Fourier transform. (The adjoint of any unitary operator is its
inverse; the Fourier operator is one example of this general
property.)

It is tempting to drop the complex conjugate in equation
(9.18), since for many applications, including x-ray and

hm
* ,r( )

(
f r g r( ) =   ( ) = ( )

=
∑H† * .g hm m
m

M

r
1

(
f r( ),

gamma-ray imaging, the objects are real, the data are real,
and the point response functions are real. However, there are
other medical imaging applications where the data are com-
plex, most notably MRI and ultrasound, such that it is impor-
tant to retain the complex conjugate notation.

Having defined the adjoint operator, we can now form
two new operators, H†H and HH†. The former maps a
function in object space to another function in object space,
for example, via projection followed by backprojection. The
HH† operator maps a vector in the space of the digital data
to another digital vector of the same dimensionality. Thus
both these new operators have input and output functions that
belong to the same space. H†H is a continuous-to-continuous
operator; HH† is a discrete-to-discrete operator (a matrix).  

Recall that for continuous-to-continuous LSIV imaging
systems we were able to analyze the system in terms of wave-
functions that are transferred independently by the system.
Our goal here in making these operator “sandwiches” is to
construct new operators with the right array of properties
such that they are amenable to a similar analysis in terms of
eigenvectors and eigenvalues of the system.

The eigenvector-eigenvalue equation for H†H is given by

(9.19)

where the un are the eigenvectors of the compound operator and
their associated eigenvalues are the mn. Equation (9.19) tells us
that the basis functions un are transferred by the operator H†H
via a change in amplitude only; they are unchanged in form.

All of the eigenvalues mn are non-negative, although
some may be zero. The number of nonzero eigenvalues is the
rank, R, of the eigensystem. The eigenvectors associated with
a nonzero eigenvalue are said to be in the measurement
space of the system. Those eigenvectors that have an eigen-
value of zero are said to be null functions of the imaging 
system. Any arbitrary object can be written as an expansion
(cf. equation (9.15)) using the basis functions that satisfy the
eigensystem equation (9.19). We can write equation (9.15) as
two sums, one over the expansion subset associated with
nonzero eigenvalue, and the other over the expansion associ-
ated with an eigenvalue equal to zero:

(9.20)

where the subscript meas refers to the measurement space of
the imaging operator, and the subscript null refers to the null
space of the imaging system. The null space is the space of all
objects that, when imaged, yield no data: Hfnull � 0. Another
way of saying this is that an arbitrary number of null func-
tions can be added to an object and the data will be unchanged
in the absence of noise. 
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Every digital imaging system has null functions. It is the
existence of null functions that causes a digital imaging sys-
tem to be noninvertible. Because a null function is not meas-
urable, the data can never provide sufficient information to
determine which actual object was at the input to the system.
They are the counterpart of the spatial frequencies of an
LSIV system for which the MTF is zero.

Imaging scientists are quite familiar with the ramifica-
tions of eigenanalysis for LSIV systems. An LSIV system
transfers a complex exponential wavefunction of frequency qq
unchanged except for scaling by the eigenvalue H(qq), as
described by equation (9.8). What is less familiar to imaging
scientists is the notion that any linear system can be subject
to eigenanalysis by the simple expediency of creating an
eigensystem that can be analyzed by sandwiching together H
and H† as we have done here.

We can write a related expression to equation (9.19) for
the eigenvectors of HH†:

(9.21)

where the vn form an orthonormal set of basis functions for
the digital data. The notation in equations (9.19) and (9.21)
is intended to make it clear that the same eigenvalues are
found when analyzing the eigenequations for both HH† and
H†H.  

The basis vectors {u, v} and coefficients mn are known as
the singular system for the imaging operator H. The general
form of that linear operator can be expressed as:

(9.22)

Singular vector decomposition (SVD) is the formal name for
the analysis we have just laid out. With the SVD decomposi-
tion of the imaging operator in equation (9.22) and that of
the object in equations (9.15) and (9.20), the imaging
process can be rewritten as:

(9.23)

The double sum collapses to a single sum because of the
orthonormality of the un. All that remains is a sum over the
vn with coefficients Thus the data set for a par-
ticular object can be easily found: determine the coefficients
for that object using SVD, and multiply them by the square
root of the transfer values for those basis vectors to determine
the weights for the basis vectors in data space. SVD turns an
arbitrary linear mapping into a simple multiplication. We
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have gotten what we were looking for in terms of an informa-
tion transfer way of thinking of our digital imaging system.

Standard numerical recipes exist for matrix multiplica-
tion and eigenanalysis of linear systems. Figure 9–2 illus-
trates the concept with a toy problem. Here we simulate a
radiographic imaging system with a Gaussian focal spot, a
digital detector with 0.2 mm pixels, Gaussian point spread
function, and pixel gain nonuniformity of �2.5%. The sys-
tem geometry is set up to give a magnification of 1.7. No
scatter is included in the model. We use simple ray-tracing to
calculate the point response functions for a large number of
finely sampled points in the object such that the images of
these points will be centered at the vertices of the rectilinear
grid at the detector, at the centers, and at points in between.
In this way we are able to approximate a continuous-to-
discrete imaging operator.  

For each point object, we calculate an image according
to equation (9.17). We then turn that two-dimensional image
into a one-dimensional column vector using the lexicographic
ordering process we described in section 9.2. Figure 9–3 is a
matrix containing the images of all the point locations we
sampled, where each column is the image of a point at a dif-
ferent location. The process can easily be reversed, putting
each column back into a square format to visualize it as an
image. We can see that the columns (the images of the vari-
ous points) are all quite similar, although there is shifting of
the bright values that happens as the point sources shift loca-
tion in object space. The images also differ slightly because
the pixels in the detector have non-uniform gain. Because we
computed PRFs for a large number of finely spaced object
locations (to sample subpixel shifts in the detector space), the
matrix is very nonsquare. The number of columns equals the
number of point sources we “imaged.” The number of rows
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Figure 9–2. Geometry of imaging system for example singular
system analysis. SEE COLOR PLATE 15.



equals the size of the image format. This matrix is a simu-
lated representation of the system operator H.

Figure 9–4 is the compound operator H†H, obtained
by multiplying the matrix in Figure 9–3 by its transpose. We
see that this matrix is square. This is the matrix we feed into
a numerical algorithm to determine its eigenvectors and
eigenvalues. These, in turn, fully describe the singular sys-
tem for H.

Figure 9–5 shows the first 16 singular vectors un of the
imaging system, depicted as quasi-continuous (simulated)
objects. Each of these vectors in object space is transferred
by the imaging system according to equation (9.23), that is,
by a simple amplitude scaling, where the scale factor is the 

associated 

Any arbitrary object can be decomposed into a weighted
sum of the discovered singular vectors according to equation
(9.15). To determine the weights for each vector, we simply
compute the inner product of the arbitrary object with each
singular vector, according to equation (9.16). The object will
be found to be the sum of its measurement (the singular 
vectors with nonzero mn) and null components (the singular
vectors with mn � 0) according to equation (9.20).

µn .

As an illustration, consider the simulated “lesion” shown
in Figure 9–6a. When we determine its measurement and
null components, we find that the object is the sum of the
vectors shown in Figures 9–6b and 9–6c. The noise-free
image of the simulated lesion will be equal to the noise-free
image of the measurement component shown in Figure 9–6b.
Note that the measurement component lacks much of the
detail of the true lesion. This detail cannot contribute to the
data, even in the absence of noise. 

By determining the measurement space of an imaging
system, we can get an understanding of the limits of the sys-
tem’s performance in the absence of noise. In the toy prob-
lem illustrated in Figures 9–2 through 9–6, we focused our
attention on a thin or planar object. The system model did not
consider attenuation or scatter, as would occur in the pres-
ence of a thick object. Our simplified illustration provides in
some sense an upper bound on the expected performance of
the imaging system for imaging a planar object embedded in
a thick medium. See also Kyprianou et al. 2008 and 2009 and
Liu et al. 2009 for further examples of eigensystems of digi-
tal imaging systems. 

9.4.3  Noise Analysis for Digital Imaging Systems

For continuous data, the noise can be described by the auto-
covariance function as given in equation (9.10). For discrete
data, the counterpart is the covariance matrix:

(9.24)K g g= −( ) −( )g g †
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Figure 9–3. Matrix containing PRFs for system shown in Figure 9–2.
SEE COLOR PLATE 16.

Figure 9–4. Compound operator H†H. SEE COLOR PLATE 17.

Figure 9–5. First 16 eigenvectors of the matrix shown in 
Figure 9–4. SEE COLOR PLATE 18.



with matrix elements

(9.25)

The covariance matrix is square and of dimension M�M. 

The pixel variances run down  

the diagonal of K. The off-diagonal elements are the covari-
ances between the different pixels in the image. This descrip-
tion is fully general, allowing for nonstationary random
vectors. A stationary data set is one for which Kn,m � Kn–m.

Figure 9–7a shows the covariance matrix for the data
from a set of ball phantom images like the one in Figure 9–8.
The bright central diagonal is the variance of each pixel with
itself. The next strongest contribution to the covariance
matrix is the correlation of each pixel in the data with its
nearest neighbor; this is seen in the bright diagonal lines on
either side of the center diagonal. And so on. The covariance
matrix is magnified in Figure 9–7b to show the tile structure
found within it. This structure results from the lexicographic
ordering used to assign the pixel elements in the detector to
the long data vector g used to generate the covariance matrix
K. Figure 9–8 is an x-ray image of a container filled with a
random collection of plastic balls of various sizes and densi-
ties (Park et al. 2009a). If we take a collection of images like
this, with the balls stirred up before each acquisition to ran-
domize their locations, we have a set of random images {g}.
The randomness in the data will be the result of measure-
ment noise and the random variation in the locations of the
balls. In the same way, we can imagine having a set of patient
images with varying patient structure and image noise.

σm m m m mg g2 2= −( ) = K ,

Kn m n n m mg g g g,
*

.= −( ) −( )
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Figure 9–6. (a) “Lesion” object. (b) Measurement component.  (c)
Null component.  

Figure 9–7. (a) Covariance matrix of the random ball phantom.
(b) Zoomed in version of the image in (a).



The structure in the covariance in Figure 9–7 shows the
long-range correlations in the data from the balls in the
object. For comparison, Figure 9–9 shows the covariance
matrix for a collection of images of a uniform phantom, in
this case, a container filled with water. The short-range cor-
relations seen in Figure 9–9 are the result of the correlations
in the detector outputs from correlated processes in the
detector alone.

Wagner argued strongly against the simple engineering
measures of contrast-to-noise ratio1 (CNR) and pixel SNR2

in his 1972 review because they are not task based. Further-
more, in terms of the random nature of noisy images, these
measures do not capture the “color” or correlations in the
noise (such as is seen in Figures 9–7 and 9–9), which can sig-
nificantly impact an observer’s ability to perform simple
visual tasks. The SNRI is both task based and dependent on
the correlation properties of the noise.

Digital imaging systems have finite detector areas. Real-
istic data sets have interesting statistics, with mean pixel val-
ues that can depend on position because of gain variations in
the detector or object structures, for example. In addition, the
data may have correlations that vary with location in the
image. Thus the assumptions for using the noise power spec-
trum to characterize the noise may not hold. One way to be
sure is to check to see that the covariance matrix is indeed
independent of such location-dependent variations. Another
is to determine whether the full Fourier transformation of the
covariance matrix, given by F KF †, is indeed diagonal. A
third approach is to compute a task SNR using both noise

descriptions (K and the NPS) to determine whether differ-
ences in the estimated system performance would result
(Kyprianou et al. 2009; Brunner et al. 2010).  

While the Fourier transformation may not yield a diago-
nal representation of the data covariance, it can be shown
that there is always a transformation that will diagonalize
the covariance matrix, giving

(9.26a)

or

K � FMF†. (9.26b)

The {en} are yet another set of orthonormal basis functions,
chosen in this case because of their unique ability to trans-
form the covariance matrix into the diagonal matrix M. 
The diagonalization of equation (9.26) is known as the
Karhunen-Loève (KL) expansion. Where the noise power

K =
=
∑ µm m m
m

M
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Figure 9–8. X-ray image of phantom containing random assort-
ment of balls of range of sizes and densities.

Figure 9–9. (a) Covariance matrix of water phantom. (b) Zoomed
in image of covariance matrix in (a).

1 CNR � amplitude of an object divided by the standard deviation in the background.
2 pixel SNR � mean image at a specified location divided by the standard deviation at
that location.



spectrum gives the strength of the noise in each Fourier fre-
quency, the KL expansion determines the strength of the fluc-
tuations in the data at each basis vector en. Fourier analysis is
simply the KL transformation in the special case of a wide-
sense stationary random process. 

Knowing that any set of basis functions can be used to
represent the data, we can use these same KL vectors that
diagonalize K to represent any image, such that 

(9.27) 

We can make use of the discrete version of the general
approach to finding coefficients of basis functions given in
equation (9.16) to determine the {bm}. We thus have two sets
of basis functions that provide important information regard-
ing the signal and noise properties of the imaging system, or
the deterministic and stochastic properties, if you will. The
SVD-derived basis functions tell us what information in 
the object is transferred (or not) from objects to images. The
KL-derived basis functions describe the noise in the data in a
set of independent channels.

9.4.4 SNR Transfer for Digital Systems

Now that we have expressions for the data vector and its noise
covariance at the output of a digital system, we can write the
analogy to the ideal observer’s test statistic in equation (9.14)
as:

(9.28)

where is the vector of coefficients describing the expected
difference in the images between the two hypotheses, andaa is
the vector of coefficients for the image being tested, as in
equation (9.27). Equation (9.28) is the generalization of the
prewhitening matched filter, showing that the optimal detec-
tor again correlates the data with the expected image of the
signal, while again discounting those channels that contain
the most noise.  

The signal-to-noise ratio for the observer that uses the
strategy in equation (9.28) is given by

(9.29)

The first expression for the SNR2, in terms of and K–1, is
the observer’s performance calculated using pixel means and
covariances; hence we refer to it as the pixel-domain version
of the figure of merit. We refer to the final expression, in terms
of the coefficients of the KL basis, as the KL-domain figure of
merit. For data made random by Poisson noise, which is inde-
pendent and uncorrelated, the KL domain is the pixel domain;
the covariance matrix of the pixel values is diagonal.
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The signal-to-noise ratio presented by Bob Wagner in
equation (9.1) is clearly evident in the general form of the
SNR2 given in equation (9.29). Both are given in terms of
coefficients that represent the signal to be detected in a data-
space representation of independent, orthogonal channels
that fully and exactly reproduce the signal. For LSIV sys-
tems, they are Fourier channels; for general digital systems
they are the KL channels. In each case, the SNR2 gets its
largest contributions from those channels or basis vectors for
which the signal coefficients are large relative to the noise. In
each case, the use of an orthogonal expansion results in a lin-
ear sum of contributions from each channel, making it easy
to see how improvements in the signal transfer within a chan-
nel, or reductions in noise in a channel, impact the observer’s
performance.

9.5 Current Trends

In this chapter we have presented a general form for the
prewhitening matched filter for digital medical imaging sys-
tems. The Fourier version of this observer has been a familiar
figure in the medical imaging literature since Bob Wagner’s
first papers on the subject. The pixel- or spatial-domain coun-
terpart of this observer has received consideration attention as
well, at least since the early 1990s, when it was suggested that
the assumptions required for the Fourier version are not
always valid, depending on the imaging modality and task.

Equation (9.29) gives the signal-to-noise ratio for the
ideal observer when the data are additive and Gaussian, the
same noise model considered by Wagner in his pioneering
work. We must acknowledge that there are circumstances
when a linear observer’s performance can be surpassed by a
nonlinear observer. This can happen whenever the data are not
Gaussian distributed. The true ideal observer makes classifica-
tion decisions based on the likelihood ratio. For non-Gaussian
data, which can result from signal and/or background ran-
domness, the ideal classifier may be a nonlinear function of
the data. 

The image to the left in Figure 9–10 is an example of
nonGaussian image statistics. This image is generated by
placing a random number of Gaussian blobs at random loca-
tions in the image, all of equal size and amplitude, to simu-
late a random, nonuniform background. In the center frame
is an image of a single Gaussian object, the signal to be
detected. On the right is a composite image containing a ran-
dom lumpy background, the low-contrast Gaussian signal,
and additive Gaussian noise (to simulate measurement
noise). When a set of images is created with lumpy back-
grounds like this example, a linear observer will not do as
well as the optimal Bayesian observer, which computes a
classifier that is a nonlinear function of the data.

If the data are not Gaussian, the linear observer of equa-
tion (9.28) can still be implemented, and that observer will
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still achieve an SNR2 given by equation (9.29). That is the
best that can be achieved by an observer that uses a linear
strategy for the classification task. In the medical imaging lit-
erature, the optimal linear observer is now commonly
referred to as the Hotelling observer after Harold Hotelling, a
statistician who published seminal papers in the early part of
the 20th century on statistical hypothesis testing (Barrett et al.
1998). A number of studies have investigated the perform-
ance of the best linear observer for tasks in similar back-
grounds to those in Figure 9–10, to better understand the
limitations of the linear observer (Gallas and Barrett 2003;
Park et al. 2007).

While the best linear observer may be suboptimal in
overall detection performance, it has several selling points.
As equation (9.28) tells us, its computation only requires
knowledge of the expected data and the covariance of the
data. These entities can be determined from a reasonably
sized database for many applications. Or, these quantities
may be determined via simulations of the imaging system
under evaluation. Modern computers and accurate Monte
Carlo algorithms for simulating gamma-ray and x-ray imag-
ing physics make this a very viable option.

Another point in the linear observer’s favor is that it has
been shown to predict the performance of human observers for
simple visual tasks. Wagner and Brown pointed out this selling
feature in their 1985 paper. They noted at that time, though,
that while the ideal observer’s SNR tracks human perform-
ance in simple visual tasks, humans are relatively inefficient
compared to the prewhitening matched filter for images con-
taining negatively correlated noise, as is the case in CT. In such
circumstances, the incorporation of a mechanism that models
the eye-brain function is needed. Much work since 1985 has
been done in the vision and psychophysics communities to val-
idate simple modifications to the linear observer that model
human performance mechanistically and give accurate predic-
tions of human performance in practice. The most widely used
such mechanism in the medical imaging community is the
incorporation of finite-width channels, for example, octave-

wide channels in frequency space in the case of the Fourier-
based ideal observer. Such channels impede the ability of the
ideal observer to accurately prewhiten the images. Channel-
ized linear observers have been shown to give a model for
human performance that tracks human data for a wide range
of image noise correlations, including the anticorrelated noise
found in CT (Myers and Barrett 1987).

Channel mechanisms that model human performance can
be used to explain certain inefficiencies of the human visual
system. Channel mechanisms have a second use in image qual-
ity evaluation in medical imaging. Efficient channels are an
important computational tool for allowing the estimation of the
best linear observer’s performance. By definition, efficient
channels preserve the ideal observer’s SNR, while reducing
the computational burden of the image quality estimation
problem through dimensionality reduction. Rather than 
dealing with an M-dimensional data set and an M�M-
dimensional covariance matrix, channels reduce the problem
size to however many channels are used. An important prob-
lem of ongoing interest is the appropriate number and type of
channel vectors to use for a particular task in medical imaging
to enable accurate estimates of image quality.

Another of the current trends in applying the task-based
SNR formulism to more realistic situations is to make use of
the notion of efficient channels in cases where the ideal
observer is a nonlinear function of the given data. The use of
channels for this case is motivated by the large dimensional-
ity problem that is a bottleneck to estimating the full nonlin-
ear optimal observer’s decision function and resulting
performance. Images with nonGaussian lumpy backgrounds
are a useful test set for comparing linear and nonlinear opti-
mal observer strategies and performance results. Using this
type of image, Park and her collaborators have investigated
efficient channels for the ideal observer, including Laguerre-
Gauss functions for extracting lesion characteristics (Park et al.
2007), singular vectors of a given linear imaging system
(Park et al. 2009b), and weights from a partially least square
algorithm that maximizes the covariance between the data
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Figure 9–10. (a) Lumpy background. (b) Gaussian signal. (c) Noisy image of signal plus background.



and the binary truth (Witten et al. 2010). These channels
have been shown to be efficient to different degrees for both
nonlinear and linear ideal observers.

9.6  Conclusion

Bob Wagner’s earliest presentations and papers broke new
ground in medical imaging, as he laid out a task-based
framework for the assessment of image quality. His guiding
principles are as important today as they were three decades
ago. Medical imaging is under increased scrutiny in these
modern times of comparative effectiveness research legisla-
tion and concerns regarding the overutilization of imaging
tests. The answer to these questions and concerns is rooted in
Bob’s exhortation to evaluate the quality of a medical imag-
ing system in terms of its usefulness in providing information
that allows a specific user to perform a specific diagnostic
task. In this chapter we have detailed the mathematical con-
nections between the ideal observer SNR of Bob Wagner’s
pioneering work to figures of merit for modern digital imag-
ing systems. Enormous progress is being made in the imple-
mentation of these methods using accurate simulations of
objects and imaging systems, advanced numerical tech-
niques, and experimental methods using relevant test objects
in real systems.
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